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Abstracr We suggest an effective method for reducing the Yang-Mills equations to systems 
of o r d i n q  differential equations. With the use ofthis method we consuuct extensive families 
of new exact solutions of the Yang-Mills equations. Analysis of the solutions thus obtained 
shows that they correspond to the conditional (non-classical) symmetry of the equations under 
study. 

1. Introduction 

A majority of papers devoted to the construction of the explicit form of the exact solutions 
of SU(2) Yang-Mills equations (YMES) 

a,au'a, - a'a,A, + e((a,A,) x A, - z(~,A,) x A, + (apA,) x AV) 

+eZA, x (A" x A,) = 0 (1) 
are based on the ansatze for the Yang-Mills field A,@) suggested by Wu and Yang, Rosen, 
't Hooft, Corrigan and Fairlie, Wilczek, Witten (see [l] and references therein). There were 
further developments for the self-dual YMES (which form the first-order system of nonlinear 
partial differential equations such that the system (1) is its differential consequence). Let us 
mention here the Atiyah-Hitchin-Drinfeld-Manin method for obtaining instanton solutions 
[Z] and its generalization due to Nahm. However, the solution set of the self-dual YMES 
is only a subset of the solutions of the YMES (1) and the problem of constructing new 
non-self-dual solutions of the system (1) is, in fact, completely open (see, also [I]). As the 
development of new approaches to the construction of exact solutions of YMEs is a very 
interesting mathematical problem, it may also be of importance for physics. The reason is 
that all famous mathematical models of elementary particles such as solitons, instantons, 
merons are quite simply particular solutions of some nonlinear partial differential equations. 

A natural approach to the construction of particular solutions of YMEs (1) is to utilize 
their symmetry properties in the same way as used in [9,10,16] (see also 1151, where the 
reduction of the Euclidean self-dual YMEs is considered). The apparatus of the theory of 
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Lie transformation groups makes it possible to reduce the system of partial differential 
equations (PDEs) (1) to systems of nonlinear ordinary differential equations (ODES) by using 
special ansatze (invariant solutions) [lo, 18,201. If one succeeds in constructing general 
or particular solutions of the said ODES (which is an extremely difficult problem), then on 
substituting the results in the corresponding ansatze one gets exact solutions of the initial 
system of PDES (1). 

Another possibility for constructing exact solutions of YMEs is to use their conditional 
(non-Lie) symmetry (for more details about the conditional symmetry of the equations 
of mathematical physics, see [6,8] and also [lo, 121) which has much in common with 
the ‘non-classical symmetry’ of PDEs of Bluman and Cole 131 (see also 117,191) and the 
‘direct method of reduction of PDES’ of Clarkson and Kruskal [4]. But the prospects for a 
systematic and exhaustive study of the conditional symmetry of a system of twelve second- 
order nonlinear PDEs (1) seem to be rather remote. It should be said that so far there is no 
complete description of the conditional symmetry of the nonlinear wave equation even in 
the case of one space variable. 

A principal idea. of the method of ansatze, as well as of the direct method of reduction 
of PDES, is a special choice of the class of functions to which the a possible solution should 
belong. Within the framework of the above methods, a solution of the system (1) is sought 
in the form 

- 
A, = H,(A Bdo(x))) LL = 0 ,3  

where H, are smooth functions chosen in such a way that substitution of the above 
expressions in the Yang-Mills equations results in a system of ODES for ‘new’ unknown 
vector functions B, of one variable 0. However, the problem of reduction of YMEs posed 
in this way seemed to be hopeless. Really, if we restrict ourselves to the case of a linear 
dependence of the above ansatz on B, 

where B&) are new unknown vector functions, o = w ( x )  is a new independent variable, 
then a requirement for reduction of (1) to a system of ODES by virtue of (2) gives rise to 
a system of nonlinear PDEs for 17 unknown functions R,,, w. What is more, the system 
obtained is in no way simpler than the initial Yang-Mills equations (1). It means that some 
additional information about the structure of the matrix function R,. should be input into 
the ansatz (2). This can be done in various ways. But the most natural one is to use the 
information about the structure of solutions provided by the Lie symmetry of the equation 
under study. 

In [ l l ]  we suggest an effective approach to the study of the conditional symmetry 
of the nonlinear D i m  equation based on its Lie symmetry. We have observed that all 
Poincard-invariant ansatze for the Dirac field $ ( x )  can be represented in a unified form by 
introducing several arbitrary elements (functions) u ~ ( x ) ,  u ~ ( x ) ,  . . . , u ~ ( x ) .  As a result, we 
get an ansatz for the field @(x)  which reduces the nonlinear Dirac equation to a system 
of ODES provided the functions ui ( x )  satisfy some compatible over-determined system of 
nonlinear PDEs. After integrating it, we obtain a number of new ansaw that cannot in 
principle be obtained within the framework of the classical Lie approach. 

In the present paper we will demonstrate that the same idea proves to be fruitful for 
obtaining new (non-Lie) reductions of YMEs and for constructing new exact solutions of the 
system (1). 
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2. Reduction of YMES 

In [16] we obtained a complete list of P(1,3)-inequivalent ansatze for the Yang-Mills field 
which are invariant under the three-parameter subgroups of the Poincark group P(1,3). 
Analysing these ansatze we come to conclusion that they can be represented in the unified 
form (2). where B,(o) are new unknown vector functions, o = w ( x )  is a new independent 
variable and functions R,,(x) are given by the expressions 

R,,(x) = (a,a, - d,,d”) cosh 00 + (acdv - d,a,) sinh 60 + 2(a, + de) 

x[(el cos03 +Ozsin&)bv + (&cos83 -81 sin&)c, 

+(e: +0;)e-” (a,  + d,)] - (c,c, + b,bJ cos03 

-(cILbV - bccy) sin83 - 2e-80(B~bIL + 82cc)(a, + d,) .  (3) 

In (3) O,(x) are some smooth functions and what is more 0, = ea(<, b,x’, c,x”), a = 1,2; 
{ = ik,x” = +(a,x, + d,x’); a,, b,, cc, de are arbitrary constants satisfying the 
following relations: 

a& = -b c b’ = -ccc” = -d,d’ = 1 

a,b” = a& = a,d’ = b,cc = b,d’ = c,d’ = 0. 

Hereafter, summation over the repeated indices from 0 to 3 is understood. Raising and 
loweringoftheindicesisperformed withthehelpofthetensorg,, =diag(l, -1, -1, -l), 
e.g. RE = g,pRg,. 

A choice of the functions w(x) ,  S,(x) is determined by the requirement that substitution 
of the ansatz (2) in the YMEs yields a system of ODES for the vector function B,(o). 

By a direct check one can convince oneself that the following assertion holds true. 

Lemma. The ansatz (2). (3) reduces the YMEs (1) to the system of ODES iff the functions 
o ( x ) ,  e,@) satisfy the following system of PDEs: 

W,.OX,‘ = ~Fl(O) ( 4 4  

00 = Fz(o) (46) 

Ra,orm = G,(o) (4c) 

= H ~ ( w )  (44 

R;RcvzpW = Qpv(w) (44 

(48 

(48) 

where F1, Fz, G,, . . . , T,.” are some smooth functions, p, v ,  y = m. And what is more, 
a reduced equation has the form 

RE 0 Rau = S p u ( 0 )  

R;IRuvx8Rpy + RVURayxRRpc + R;RaGpRgu = TNvy(@) 

k , y B Y + l , Y B Y + m p y B Y + e q , v y B Y x  B Y + e h l L v y B ”  x BY 

+eZBY x (BY x Be) = 0 (5) 
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where 

R 2 Zhdanov and W I Fushchych 

k w  = g w y F 1 -  G,Gy 
= g p J z  f 2 Q p y  - GpHy - GpGy 

mpy = S,, - GpHy 
qlLw = &,G" f &?",G, - %?,uG, 
hpvy $ ( g , y f f u  - g&y) - Twy .  

(6) 

Thus, to describe all ansatze of the form (2). (3) reducing the YMEs to a system of ODES, 
one has to construct the general solution of the over-determined system of PDES (3), (4). Let 
us emphasize that the system (3), (4) is compatible, since the ansiitze for the Yang-Mills 
field A,(x)  invariant under the threeparameter subgroups of the Poincar6 group satisfy 
equations (3), (4) with some specific choice of the functions F1, Fz, . . . , T,", [16]. 

Integration of the system of nonlinear PDEs (3),(4) demands a huge number of 
computations. That is why we present here only the principal idea of our approach to 
solving the system (3), (4). When integrating it we essentially use the fact that the general 
solution of the system of equations (4a),(4b) is known [13]. With o ( x )  already known we 
proceed to integration of the linear PDEs (4c), (44. Next, we substitute the results obtained 
in the remaining equations (4) and get the final form of the functions o ( x ) ,  S,(x). 

Before presenting the results of integration of the system of PDEs (3),(4) we make a 
remark. As the direct check shows, the structure of the ansatz (Z), (3) is not altered by the 
change of variables 

o + W' =~T(w) 

el -te;'=e1 +e~",(o)cose~+~~(o)sin&) 

6'2 + 0; = 62 + eeo T2(o) cos& - T,(w) sin03 

eo + e; =e, + 

(7) 
) ( 

e3 --f e; = e3 + fi(o) 

where T(w) ,  T,(o) are arbitrary smooth functions. That is why solutions of the system 
(3), (4) connected by the relations (7) are considered as equivalent. 

Integrating the system of PDEs within the above equivalence relations, we obtain the set 
of ansatze containing the ones equivalent to the Poincar6iuvariant ansatze. We list below 
the corresponding expressions for the functions 0,. o: 

6,=0 w = d . x  ( 8 4  

S,=O w = a . x  (8b) 

@,=O o = k . x  (84  

(84 

(84 

(Sg) 

eo = -1nJk . x i  el =% = O  $3 =cxlnJk . X I  o = (a .x)' - (d .x)' 

6, = -In Ik . x I  

eo=-b .x  e 1 = & = e 3 = o  O = C . X  

0, = -b . x  

8, = 82 = 6'3 = 0 o = c . x  

81 = 02 = & = 0 o = b . x  - lnlk . x I  

6, = (Y arctan(b . x / c  . x )  

0, = - arctan(b . x / c  . x )  

81 = 02 = 0 

o = (b . x)' + (c . x)' 
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where a . x stands for u,x' and 01 is an arbitrary real constant. 
We do not consider reduction of YMEs with the help of the above ansiitze, because it is 

studied in great detail in [16]. 
We concentrate on the cases when the new (non-Lie) ansatze are obtained. It so happens 

that the procedure described gives rise to non-Lie ansatze provided the functions ~ ( x ) ,  O,(x) 
within the equivalence relations (7) have the form 

8, =e,($, b,xy, c,x") o = w(5, b,x", cvxy). (9) 

The list of inequivalent solutions of the system of PDEs (3, (4) satisfying (9) is exhausted 
by the following solutions: 
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UJ = b . x  + wi(6) eo = c r ( c . x +  wz(6)) 

e, =-aW,,(c) a = i , 2  e, = o  

00 = T ( 6 )  

81 = (:(&e7 + ?)(b . x  sinwl - c . x cos W I )  + ~ 3 ( . $ ) )  s i n w l  

03 = WI(.$) o = b .  xcos wl + c . x sin + ~ ~ ( 6 )  

Here 01 jL 0 is an arbitrary constant, E = f l ,  WO, W I ,  WZ, w g  are arbitrary smooth functions 
on t = Lk.  x and T = T ( t )  is a solution of the nonlinear ODE Z 

(f +&e’)’ + G; = xeZT x E a] ( 1 1 )  
where a dot over the symbol denotes differentiation with respect to e. 
YMEs yields systems of nonlinear ODES of the form (5), where 
k,, = -- 4 ‘ k  p k y 

mKY = -4 (w0 + W: + W: + w:)kpky - (GO + tb3)k,kY 

Substitution of the ansatz (2), where R,,(x) are given by expressions (3), ( lo) ,  in the 

lpy = -(WO + ~ 3 ) k p k y  
2 

ql lv  - - ‘(g 2 IrY k ” + guykg - 2gwvky) 

hp,, = (WO + ~ 3 ) ( g &  - gp&) + ~ ( W I  - wz)((kpbu - k&) cy 

+(b,cv - bvcp)ky + (c&v - c&&) 
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3. Exact solutions of the nonlinear Yang-Mills equations 

The systems (5),(12) are systems of twelve nonlinear second-order ODES with variable 
coefficients. That is why there is little hope of constructing their general solutions. However, 
it is possible to obtain particular solutions of the system (5 )  whose coefficients are given 
by expressions (12b)+26). 

Consider, as an example, the system of ODES (5) with coefficients given by expressions 
(1%). We seek its solutions in the'form 

B, = k,elf (U) + b,ezg(U) fg # 0 (13) 
whereel =(1,0,0), e2 = (0.1,O). 

On substituting the expression (13) in the above-mentioned system we get 

f'+ (01' - e z g 2 ) f  = o f g  + 2 f g  = 0. (14) 

g=.\.f- * AERI  AZO. (15) 

The second ODE from (14) is easily integrated to give 

Substitution of the result obtained in the first ODE from (14) yields the Ermakov-type 
equation for f (U): 

f'f01'f - e 2 A Z f - 3  =0, 
which is integrated in elementary functions [14] 

I f2 f = (a-'C2 +or-'(C4 - azezAz)1~2sinZlalm) . (16) 

Here C # 0 is an arbitrary constant. 

class of exact solutions of the YMES (1): 

A, =elk,exp ( -ac.x-awz)  01 2 C 2 + ~ - z ~ C 4 - ~ 2 e 2 A z ) 1 ~ z s i n 2 1 ~ 1 ( b ~ x + w ~ ) )  

+eZ.\.(a-'CZ +&C4 -01~e~A~)~/'sin2~01l(b.x + wl)) 

Substituting (13),(15),(16) in the corresponding ansatz for A,(x), we get the following 

l r -  

-1  

( -  

In a similar way we have obtained five other classes of exact solutions of the Yang-Mills 
equations: 

A, = e~k,e-'(b x cos w1 + c . x sin w1 + W Z ) ' / ~ Z ~ / ~  (ieh/Z)(b. x cos W I  

+c . x  sinwl + wz)') + e2A ( b .  x cos U J ~  + c . x  sin IUI + 102) 

x(c, cos wl - b, sin w1 + Zk,[+(ce' + ? ) ( b .  x sin w1 

( .  

-c . xcosw1) + w31) 

A, =elk,e-T(Clcosh[eA(b.xcoswl +c.xs inwl  +w~)J+C~sinh[eA 

X(b.xcoswl +c .xs inwl  + W Z ) ] )  +ezA(c,cosw~ -b,sinwl 

+2k,[$(ee' + ?)(b .  x sin w1 - -c  . x cos wI) + w31); 
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2 2 -2 112 A, = elk,e-’(C2(b , x cos w1 + c . x sin w~ + wz)’ + A e C ) 
+ezA(C2(b . x cos w~ + c . x sin wl + w2)’ + AZe2C-2)-1 

x(b,coswl+c,sinwl-~k,[wl(b.xsinwl - C . X C O S W I ) - ~ Z ] )  

A, = e~k,Zo((ieA/Z)€(b . x  + w$ + (c . x  + W Z ) ~ ] )  + ezA(c,(b. x + WI) 
- b e ( c . x + w ~ ) - ~ k , [ ~ ~ ( c ~ x f w z ) - ~ i ) 2 ( b . x + w 1 ) ] ) ;  

A, = e lk , (C l [ (b .  x + w1)’+ ( c .  x + w&A12 + Cz[(b. x + w1)’ 

+(c . x + w2)21-eA/z) + q h [ ( b  . x + wl)’+ ( c  . x + ~ 2 ) ~ I - l  

x ( c , ( b .  x + w1) - b,(c. x i- wz) - ik , [Wl(c .  x + wt) 
- w d b  . x  + wl)]). 

Here CI, C2, C # 0, A are arbitrary parameters, w1. w2, w3 are arbitrary smooth functions 
on E = $k .x  and T = T ( t )  is a solution of the ODE (11). In addition, we use the following 
notation: 

k .  x = k,X” 

z s  (U) = Cl J“ (0) + czr, (0) 
el = (1,O. 0) 

b . X  = b,x” c .  x = c,x” 

ez = (0, 1.0) 

where .Ir, YT are the Bessel functions. 
Thus we have obtained broad families of exact non-Abelian solutions of the YMES (1). 

It can be verified by direct and rather involved computation that the solutions obtained are 
not self-dual, i.e. that they do not satisfy self-dual YMES. 

4. Conclusion 

Let us say a few words about symmetry interpretation of the ansatze (Z), (3), (10). Consider, 
as an example, the ansatz determined by expressions (loa). As a direct computation shows, 
generators of a three-parameter Lie group G leaving it invariant are of the form 

Q I  =ka& 
3 

Q2 = baa. - Z[wo(k,b, - k,b,) -t w2(k,cv - S c , ) ]  ~ A Y ” a , 4 . w  (17) 
“=I 

3 
Q3 =c& -2[w1(k,b,  - k,b,) + w3(k,cI, - k , c , ) ] ~ A ‘ ” a a + .  

U = l  

Evidently, the system of PDEs (1) is invariant under the one-parameter group GI having 
the generator Q l .  But it is not invariant under the groups having the generators Q2,  Q 3 .  
Consider, as an example, the generator Qz. Acting by the second prolongation of the 



New classical solutions of the Ymg-Mills equations 6261 

operator Qz (which is constructed in a standard way, see, e.g., [18,20]) on the system of 
P D B  (I), after some tedious algebra we obtain the following equality: 

QzL, = 2 wo(k,b, - k,b,) + wz(k,c, ~- k,c,))LY 
Z ( 

fZ(wo(k,b, - k&p) + Gz(kpc, - k , c , ) ) W  

-ar((wobv + w z c v i w  - k , ( w o M  + w 2 g ) )  

-(web, + WzcJauelA,  - k@(wo(wobv + wzcd 

+e((wob, + W Z C , ) ~  -kdwoQzA” - + w2Q3AU)) -- x A, 

+2e(wob,AY + w2c,AY) x Q l A ,  

-2ek”AY x (woQzA, - + WZQ~A,) - + e A ,  x (web, + wzc,)elAY 
- 

-ek,A, x (woQzA” - + W Z Q ~ A “ ) .  - (18) 
In the above expressions we  use the designations 

L, = a.aYA, -~a,a,A, + e((a,A,) x A, - 2(a,a,) x A, + ( a p d , )  x A V )  

+e2A, x (A” x A,) 

QIA, E kaaaA, 

QzA,  = b,a,A, + Z(wo(k,b, - k,b,) + wz(k,cv - k,c,))AY 

Q3A, = c&A, + 2(wl(k,b, -k,b,) + w3(k,cu - k,cJ)AY 

and by the symbol Qz we denote the second prolongation of the operator Qz. 

As the underlined terms in (18) do not vanish on the set of solutions of the YMES, 
the system of PDEs (I) is not invariant under the Lie transformation group Gz,having the 
generator Qz. On the other hand, the system 

Z 

L,=O Q u A p = O  n=l ,2 ,3 

is evidently invariant under the group GI.  The same assertion holds for the Lie 
transformation group GS having the generator Q3. Consequently, the YMEs are conditionally 
invariant with respect to the three-parameter Lie transformation group G = G I  8 Gz @ G3. 
This means that solutions of the YMEs obtained with the help of the ansatz invariant under 
the group with generators (17) cannot be found by means of the classical symmetry reduction 
procedure. 

As rather tedious computations show, the ansatze determined by expressions (10b)- 
(104 also correspond to conditional symmetry of the YMEs. Hence it follows, in particular, 
that the YMES should be included in the long list of mathematical and theoretical physics 
equations possessing non- vial conditional symmetry [71. 

Another interesting observation is that by specifying the arbitrary functions contained 
in non-Lie ansatze in an appropriate way, one can obtain some Lie ansatze. Really, 
expressions (3), (80, (8m), (8q) are particular cases of expressions (loa), expressions 
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(sa),(Se),($f),(Sg), (Sn), (80). (Ss),(St): (Su) are particular cases of expressions (lOb),(IOc) 
and expressions (SA), (Sp) are particular cases of the expressions (104. So if we denote 
the invariant solutions of the Yang-Mills equations symbolically by the dots in some space 
of solutions of the system of PDEs (I), then some of them can be connected by curves 
which are conditionalJy-invariant solutions! Thus, the at first glance distinct solutions are 
particular cases of more general solutions. A similar assertion holds for the nonlinear 
wave [I31 and Dirac [ I l l  equations. On the other hand, some invariant solutions (namely 
those determined by expressions (Sb), (Sd), (89, (Sj), (Bk), (Sr), (87)) cannot be connected 
with other solutions by the curve that is a conditionally-invariant solution of the form (10). 
A possible explanation of this fact is that there exist more general conditionally-invariant 
solutions of was.  

The above picture admits an analogy with the case where the equation under study bas 
a general solution. In that case, each two solutions can be connected by a curve which 
is a solution of the equation. The only exceptions are the singular solutions which are 
obtained by some asymptotic procedure. So one can guess that there exists a collection of 
conditionally-invariant solutions of YMEs such that the majority of invariant solutions are 
their particular cases and the remaining ones are obtained from these by an asymptotic 
procedure. However, this problem so far remains completely open and needs further 
investigation. 

Our last remark is that the procedure suggested here also yields some well known 
exact solutions of YMES. For example, the ansatz for the Yang-Mills field determined by 
expressions (2). (3) and (Sv)  gives rise to the meron and instanton solutions of the system 
(I), originally obtained with the help of the ansatz suggested by 't Hooft [XI, Comgan and 
Fairlie [5] and Wilczek [22] (for more details, see 1161). 

R 2 ZMaMv and W I Fushchych 
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