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Abstract. We suggest an effective methad for reducing the Yanpg-Mills equations to systems
of ordinary differential equations. With the use of this method we construct extensive families
of new exact solutions of the Yang-Mills equations. Analysis of the solutions thus obtained
shows that they correspond to the conditional (non-classical) symmetry of the equations under
study.

1. Introduction -

A majority of papers devoted to the construction of the explicit form of the exact solutions
of SU(2) Yang-Mills equations (YMES) )

8,0° Ay — 93,4, + e((3,A)) X Ay = 20Ay) X Ay + (@A) X A")

+et A, x (A" x A) =0 1

are based on the ansitze for the Yang—Mills field A, (x) suggested by Wu and Yang, Rosen,
’t Hooft, Corrigan and Fairlie, Wilczek, Witten (see [1] and references therein). There were
further developments for the self-dual YMEs (which form the first-order system of nonlinear
partial differential equations such that the system (1) is its differential consequence). Let us
mention here the Atiyah-Hitchin—Drinfeld-Manin method for obtaining instanton solutions
[2] and its generalization due to Nahm. However, the solution set of the self-dual YMEs
is only a subset of the solutions of the YMEs (1) and the problem of constructing new
non-self-dual solutions of the system (1) is, in fact, completely open (see, also [1]). As the
development of new approaches to the construction of exact solutions of YMEs is a very
interesting mathematical problem, it may also be of importance for physics. The reason is
that all famous mathematical models of elementary particies such as solitons, instantons,
merons are quite simply particular solutions of some nonlinear partial differential equations.

A natural approach to the construction of particular solutions of YMEs (1) is to utilize
their symmetry properties in the same way as used in [9, 10, 16] (see also [15], where the
reduction of the Euclidean self-dual YMEs is considered). The apparatus of the theory of
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6254 R Z Zhdanov and W I Fushchych

Lie transformation groups makes it possible to reduce the system of partial differential
equations (PDEs) (1) to systems of nonlinear ordinary differential equations (ODES) by using
special ansitze (invariant solutions) [10, 18,20]. If one succeeds in constructing general
or particular solutions of the said ODEs (which is an extremely difficult problem), then on
substituting the results in the corresponding ansétze one gets exact solutions of the initial
systemn of PDEs (1).

Another possibility for constructing exact solutions of YMEs is to use their conditional
(non-Lie} symmetry (for more details about the conditional symmetry of the equations
of mathematical physics, see [6,8] and also [10,12]) which has much in common with
the ‘non-classical symmetry’ of PDEs of Bluman and Cole [3] (see also [17,19]) and the
‘direct method of reduction of PDEs’ of Clarkson and Kruskal {4]. But the prospects for a
systematic and exhaustive study of the conditional symmetry of a system of twelve second-
order nonlinear PDEs (1) seem {0 be rather remote. It should be said that so far there is no
complete description of the conditional symmetry of the nonlinear wave equation even in
the case of one space variable.

A principal idea of the method of ansitze, as well as of the direct method of reduction
of PDEs, is a special choice of the class of functions to which the a possible solution should
belong. Within the framework of the above methods, a solution of the system (1) is sought
in the form

A, =H, (x, B,,(w(x))) @£=03

where H, are smooth functions chosen in such a way that substitution of the above
expressions in the Yang-Mills equations results in a system of ODEs for ‘new’ unknown
vector functions B, of one variable w. However, the problem of reduction of YMEs posed
in this way seemed to be hopeless. Really, if we restrict ourselves to the case of a linear
dependence of the above ansatz on B,

Ap(x) = Ru(x)B*(w) @)

where B, (w) are new unknown vector functions, @ = w(x) is a new independent variable,
then a requirement for reduction of (1) to a system of ODEs by virtue of (2) gives rise to
a system of nonlinear PDEs for 17 unknown functions Ry, . What is more, the system
obtained is in no way simpler than the initial Yang-Mills equations (1). It means that some
additional information about the structure of the matrix function Ry, should be input into
the ansatz (2). This can be done in various ways. But the most natural one is to use the
information about the structure of solutions provided by the Lie symmetry of the equation
under study,

In [11] we suggest an effective approach to the study of the conditional symmetry
of the nonlinear Dirac equation based on its Lie symmetry. We have observed that all
Poincaré-invariant ansitze for the Dirac field 1 (x) can be represented in a unified form by
introducing several arbitrary elements (functions) u;(x), ua(x),..., ux(x). As a result, we
get an ansatz for the field ¥ (x} which reduces the nonlinear Dirac equation to a system
of ODEs provided the functions u;(x) satisfy some compatible over-determined system of
nonlinear PDEs. Afier integrating it, we obtain a number of new ansitze that cannot in
principle be obtained within the framework of the classical Lie approach.

In the present paper we will demonstrate that the same idea proves to be fruitful for
obtaining new (non-Lie) reductions of YMEs and for constructing new exact solutions of the
system (1).
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2. Reduction of YMEs

In [16] we obtained a complete list of P(1, 3)-inequivalent ansétze for the Yang—-Mills field
which are invariant under the three-parameter subgroups of the Poincaré group P(1,3).
Analysing these ansitze we come to conclusion that they can be represented in the unified
form (2), where B,(w) are new unknown vector functions, @ = ®(x) is a new independent
variable and functions R, (x) are given by the expressions

Ruw(x) = (apay — dyd,) coshbo + (aud, — dpay) sink 8 + 2(ay, +dy)
X [(fy cos 85 + G sinbs)b, + (B2 cos 8y — G 5inbs)cy
(62 + 02)e M (ay +dy)] — {cucy + Byuby) cos B
—(cuby — byey,) sind; — 2e~®(61by, + Gac,)(ay + db). (3)

In (3) 8, (x) are some smooth functions and what is more &, = 8,(§, byx¥, c,x*),a=172;
£ = Lhyx* = 3(aux* + dyx*); au, by, cu, dy are arbitrary constants satisfying the
following relations:

gpat = —b b* = —cpocf = —d,d* =1
aub‘" = auc"‘ - a'ud“ = bﬂc‘”' = b'u_d” = Cﬂd“ =0.

Hereafter, summation over the repeated indices from 0 to 3 is understood. Raising and
lowering of the indices is performed with the help of the tensor g, = diag(l, -1, -1, —1),
e.g Ry = gapRgu.

A choice of the functions w (x}, 6,(x) is determined by the requirement that substitution
of the ansatz (2) in the YMEs yields a system of ODEs for the vector function B, (w).

By a direct check one can convince oneself that the following assertion holds true.

Lemma. The ansatz (2),(3) reduces the YMEs (1) to the system of ODEs iff the functions
w(x), 6,(x) satisty the following system of PDEs:

Wy, e = F1(w) (4a)
O = F(w) (45)
Ropwy, = Gulw) (4c)
Ryps, = Hy(w) (4d)
RS Ry s = Qpv(@) (de)
R% 0 Roy = Sy (@) @4
Ry Rouey Ry + RS Rayxy Rpy + RS Ry Rgy = Ty (@) (48}
where Fy, Fp, Gy, ..., T, are some smooth functions, &, v, ¥y = 0, 3. And what is more,

a reduced equation has the form
Ky BY 1,y BY + my, BY + equ, BY x BY + eh,,, B® x BY
+e’B, x (BY x B,) =0 (5)
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where
kyy = guy 1 — GGy
luy = 8uyFa + 20y — GuHly — GuG,y
Muy = Syy — GuHr : ©)
Quoy = 8uyCv + 80y G — 280Gy
Buvy = %(guva — guvily) — Tyvy.

Thus, to describe all ansitze of the form (2}, (3) reducing the YMESs to a systemn of ODEs,
one has to construct the general solution of the over-determined system of PDEs (3), (4). Let
us emphasize that the system (3), (4) is compatible, since the ansiitze for the Yang-Mills
field A, (x) invariant under the three-parameter subgroups of the Poincaré group satisfy
equations (3), (4) with some specific choice of the functions Fy, F, ..., T,y [16).

Integration of the system of nonlinear PDEs (3),{4) demands a huge number of
computations. That is why we present here only the principal idea of our approach to
solving the system (3),(4). When integrating it we essentially use the fact that the general
solution of the system of equations (4a), (4b) is known [13]. With w(x) already known we
proceed to integration of the linear PDEs (4¢), (4d). Next, we substitute the results obtained
in the remaining equations (4) and get the final form of the functions w(x), 8, (x).

Before presenting the results of integration of the system of PDEs (3), (4} we make a
remark. As the direct check shows, the structure of the ansatz (2), (3) is not altered by the
change of variables

@ = o' =T(w) 6o — 6y = o + Tp(w)

61 — 6 =, +&% (T1 () cos 5 + Ta(w) sin 6'3)
%
Gy = 8, =8, + e (Tz(w) cosf; — Ty{w) sin 93)

8 — 6] =63 + T3(w)

where T(w), T,(w) are arbitrary smooth functions. That is why solutions of the system
(3), (4) connected by the relations (7) are considered as equivalent,

Integrating the system of PDEs within the above equivalence relations, we obtain the set
of ansitze containing the ones equivalent to the Poincaré-invariant ansitze. We list below
the corresponding expressions for the functions 6, w:

6, =0 w=d-x (8a)
8,=0 w=a-x (8b)
6,=0 w=k-x (8c)
6o = —Inl|k - x| B =0y =0 1 =alnlk- x| w=(a 2 —d xP

(8d)
Gp=—Inlk x| h=h=8=0 w=c-x (8e)
Bp=—b-x 6 =6, =0 =0 w=c-x &N
Bg==b-x B =0=06;=0 w=b-x=Inlk-x| (8g)
6y = e arctan{b - x/c - x) G =60,=0

(8R)

g3 = —arctan(b - x/c - x) w= b -x)}+ (¢ x)*
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=0 =6=0 93=-—a_-x w=d-x (8i)
Bh=0=06,=0 O3 =d-x w=a-x &
bop=0=0,=0 0 =—1k-x w=a-x—d-x (8%)
=0 61=%(b-x—cuc-x)(k-x)_1 By =6;=0 w=k-x (8
G=6=6=0 91=%c-x' w=k-x (8m)
Bp=0=08;=0 O =—tk-x  w=4b-x+ (k- -x)* (8n)
Gp=0=6;=0 By =—4k-x w=4ab-x —c-x)+ak-x)? (80)
90=—1n]k-x| 31=92=0
) . &p)
G = —arctan(b - x /¢ - x) w=({F-x)+{c-x)
-1
bo=6=0 o =1(cox+@+k-xpb-x)(1+k x@+k-)
, (8g)
-
92=—%(b-x—c-xk.x)(1+k-x(a+k-x)) w=k-x
Bp=—Inlk- x| b =1b xk-x)™
(8r)
6y =6;=0 w="(a-x)*=(b-x)*—-(d-x)*
bo=-Mnlk-x| G =1b-xk-x)" fp=6:=0 w=c-x (85)
Go=~llk-x| G =1b-x(k-x)"
@81
h=060=0 w=hlk x|—c-x
Bo = —Inlk - x| 6 =30 x—Inlk-xk x)"
' (8u)
Or=0;=0 w=cahnjk-x|—c-x
Gy = —Inik - x| Oy = 4b-x(k-x)7! by =1c x(k-x)7"
: 8w

& =olnlk. x| w=(a-x)z—(b-x)z—(c-x)z—-(d-x)z.

where g - x stands for a,x* and « is an arbitrary real constant.

We do not consider reduction of YMEs with the help of the above ansiitze, because it is
studied in great detail in [16].

‘We concentrate on the cases when the new (non-Lie) ansétze are obtained. It so happens
that the procedure described gives rise to non-Lie ansétze provided the functions w{x), 8,(x)
within the equivalence relations (7) have the form

8= 0,(E, bx", 0x") 0= w(E, bur’, cox”). ©)

The list of inequivalent solutions of the system of PDEs (3), (4) satisfving (9) is exhausted
by the following solutions:

bo=6:=0 w=1k-x

‘ (10a)
b =wo-x+wiEle-x  B=wE)b-x+ws(E)cx
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w=b-x+ wE) 60=a(c-x+w2(§'))

(108)
by = —3,(§) a=12 63 =0
8o =T (&) 63 = wi(§) w=~5-xcosw) +c-xsinw +wy(&)
& = (%(seT + )b -xsinw; —¢ - % cos wi) -+ wg(e;-‘)) sin wy
+%(w1(b-xsin w; — ¢ - X Cos w;) —1'02) cOS Wy (10¢)
By = —(i(aeT +TYE-xsinw, —c-xcoswy) + w3(§)) cOS Wy
+%(1b1(b -xsinw; — ¢ - xcoswy) — 11)2) sinw;
bo=0  &y=arctan(lc ¥ +wa®b ¥+ wi(®)])
(10d)

bo=—tu,® a=12 o=(bxtwm@P+lcx+ wz(f)]z)m'

Here ¢ # 0 is an arbitrary constant, £ = &1, wy, wi, wy, ws are arbitrary smooth functions
on§ = %k -x and T = T(§) is a solution of the nonlinear ODE

(T + £e")? + w? = xe®™ xeR! (11)
where a dot over the symbol denotes differentiation with respect to &.

Substitution of the ansatz (2), where R, {(x) are given by expressions (3), (10), in the
YMEs vields systems of nonlinear ODEs of the form (5}, where

kuy = _%k.ukr bey = —(wo + wadk, by
myy = —4 (Wi + w? + wl + whkuk, — (o + Wsdkuk,
Tuvy = %(g}-t}'kv + guyky — 28uvky) (12a)
Py = (0 -+ w3) Gy — Buoky) + 201 — w) (Ceuby — uby) Gy
+(Bucs — bucu ey + (cuky — ok dby )
kuy = —8uy — buby by =0 My = =0 (auay = dudy)
Guvy = Euybv + Buyby — 280y (128)
By = a((andu — aydy)ey + (dycy — docy)a, + (Cuay — c.,czﬂ)d,,)
kuy = —8uy — buby buy = —(&/2)bykey
Mmyy = —(x/Hkky, Guvy = Buyby + Zuyby — 2gu0by (12¢)
huuy = (5/4)(3,uykv - g,twky)
kuy = —8uy — buby Lup =~ (guy + byby)
Muy = ~w ™ cucy Quoy = 8uybv + guyby — 28uuby (12d)

Ruvy = %"’"] (8uybv — Buvby).
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3. Exact solutions of the nonlinear Yang-Mills equations

The systems (5),(12) are systems of twelve nonlinear second-order ODEs with variable
coefficients. That is why there is little hope of constructing their general solutions. However,
it is possible to obtain particular solutions of the system (5) whose coefficients are given
by expressions (126}12d).

Consider, as an example, the system of ODEs (5} with coefficients given by expressions
(12b). We seek its solutions in the form

B,u = k,uelf(w) + b,u.e2g(w) fg#0 (13)

‘where e; = (1,0,0), ey = (0,1, 0).
On substituting the expression (13) in the above-mentioned system we get

FH@t-eghf=0  fi+2fg=0. (14)
The second ODE from (14) is easily integrated to give
g=xrf2 reR' A#£0. (15)

Substitution of the result obtained in the first ODE from (14) yields the Ermakov-type
equation for f(w):

Frolf=enf? =0,
which is integrated in elementary functions [14]
1/2
f= (a“2C2 + a3 — a2y sinZloz[w) : (16)

Here C 5 0 is an arbitrary constant.
Substituting (13), (15), (16) in the corresponding ansatz for A, (x), we get the following
class of exact solutions of the YMEs (1):

12
A, = erky exp (—oc - x — owy) (:r%:'z +a~X(CH — 2PN 2 sin 20l (B - x + w ))
, -1
+egk(¢x"2C2 + o HC - 222D 2 5in 2| (B - x + w1)) .
x (b + Lhutin ).
In a similar way we have obtained five other classes of exact solutions of the Yang-Mills
equations:

Ay = elk,;e‘r(b cxcoswy + ¢ xsinw + w2)1/2z[,4((ie}./2)(b . X COS W)
+¢ - xsinwy + UJQ)Z) +esh (B xcoswy + ¢ - x sinwy + wy)
® (C,u. cosw — by sinw; + 2kﬂ[%(ser + TYB - x sinwn
—c-xcosw1)+w3]) ) -

A, =ekge " (C; cosh[eA(b - x cos w; + ¢ - x sinw; + wp)] + C sinh[er
x{b-xcosw;+c-xsinw + wg)]) + ezk(c,,t cos wy — by sinwy

+2ku[‘l;(seT + TYb-xsinw; —c-xcosw;) + w3]);
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A, = e;kue‘r(cz(b cxcoswy + ¢ - xsinwy +w)? + lzezc"z)m
+ezl(C2(b -xcoswy + ¢ - xsinwy + wn)? + Juze?'c,"z)_1
x(bﬂcoswl + ¢y sinwy — Sk fwi(b - xsinw; —c - xcosw;) — u'.:z])
Ay = ek Zo{(ea /DG % + wil + (¢ -1 + w21 + eah{eu b -1+ wy)
=B, (c - X + wy) — gkultby (c - x + wp) — (b - x + wl)]);
A, = e1kp(C1[(b cx+u) (e x + W) 1M 4 Gl - x 4 w)?
+c-x+ wg)z]"’m) + e [(B - x + w )P + (¢ - x + wp)?]™!
x(c#(b x4 wy) — bule - x + we) — k(e x + wy)

—a(b-x + w:)]).

Here Cy, Cs, C 50, A are arbitrary parameters, w,, w», ws are arbitrary smooth functions
on g = %k-x and T = T(£) is a solution of the ODE {11). In addition, we use the following
notation:

k-x=kx* b-x=bx* c-x =cpx”
Z; (@) = CiJs{w) + Co X (w)
e =(1,0,0 e = (0,1,0)

where J;, ¥; are the Bessel functions.

Thus we have obtained broad families of exact non-Abelian solutions of the YMEs (1).
It can be verified by direct and rather involved computation that the solutions obtained are
not self-dual, i.e. that they do not satisfy seli~dual YMEs.

4. Conclusion

Let us say a few words about symmeiry interpretation of the ansétze (2), (3), (10). Consider,
as an example, the ansatz determined by expressions (10a). As a direct computation shows,
generators of a three-parameter Lie group G leaving it invariant are of the form

O = kaaat

3
Q02 = byda —~ 2[wolluby — kyby) + walkuc, — kye )] Y A®Bpen (17

a=1

3
Q3 = o — 2[wn Ueuby — kuby) + w3lkucy, — kycy)l Y | A Bsen.

a=l

Evidently, the system of PDEs (1) is invariant under the one-parameter group Gy having
the generator ;. But it is not invariant under the groups having the generators Q,, (s.
Consider, as an example, the generator (2. Acting by the second prolongation of the
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operator Q5 (which is constructed in a standard way, see, e.g., [18,20]) on the system of
PDEs (1), after some tedious algebra we obtain the following equality:

QoL = Z(wo(kgb,, = k) + walkuc, — kucﬂj)L”
+2(1'Uo(kub,, — koby) + p(ucy — kvcu)) 0,4

0 ((woby +w26,) Q14" — iy (iip 024° + ;03 4%))

—(woby + 126,00 01 A&y — ky (wo(woby + wac,)

Fwsnb, + wsc,)) Q1A

e((woby + w26,) Q1 A° ki, (w0 Q2 A” + 1,03 4%)) X A,

+2e(wpb, A 4- wac, AY) x _%é&

—2eky, AY x (wo Q2 Ay, + w2 Q3A,) +eAy X (woby + wac, )01 A
—eky Ay X (wo@r A" + w203 A%). (18)

In the above expressions we use the designations

L, =0, A, — 30,4, +¢((B.A)) X 4, —28,4,) x A, + (3" 4,) x A"

+e® A, x (AY x Ay)
QlAﬂ', = kntamA,u,
024, = bude Ay + 2(wolkuby — kiby) + walkuc, — kuc,)) A

034, = cade Ay +2(wrGhuby — kbu) + walkucy — kicy) ) A”
and by the symbol Q> we denote the second prolongation of the operator Q5.
2

As the underlined terms in {18) do not vanish on the set of solutions of the YMEs,
the system of PDEs (1) is not invariant under the Lie transformation group G, having the
generator Q. On the other hand, the system

L,=0 QuA,=0 a=123

is evidently invariant under the group G;. The same assertion holds for the Lie
transformation group <3 having the generator Q3. Consequently, the YMEs are conditionally
invariant with respect to the three-parameter Lie transformation group G = G; @ G2 ® Gs.
This means that solutions of the YMEs obtained with the help of the ansatz invariant under
the group with generators (17) cannot be found by means of the classical symmetry reduction
procedure. :

As rather tedious computations show, the ansdtze determined by expressions (105)-
{104} also correspond to conditional symmetry of the YMEs. Hence it follows, in particular,
that the YMEs should be included in the long list of mathematical and theoretical physics
equations possessing non-trivial conditional symmetry [7].

Another interesting observation is that by specifying the arbitrary functions contained
in non-Lie ansétze in an appropriate way, one can obtain some Lie ansitze. Really,
expressions (3), (80),(8m),(8¢) are particular cases of expressions (10g), expressions
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(8a), (8e), (8. (82), (8n), (80). (85), (81), (Bu) are particular cases of expressions (108}, (10¢)
and expressions (84), (8p) are particular cases of the expressions (10d). So if we denote
the invariant solutions of the Yang-Mills equations symbolically by the dots in some space
of solutions of the system of PDEs (1), then some of them can be connected by curves
which are conditionally-invariant solutions! Thus, the at first glance distinct solutions are
particular cases of more general solutions. A similar assertion holds for the nonlinear
wave [13] and Dirac [11] equations. On the other hand, some invariant solutions (namely
those determined by expressions (8k), (8d), (81), (87), (8k), (8r),(8v)) cannot be connected
with other solutions by the curve that is a conditionally-invariant solution of the form (10).
A possible explanation of this fact is that there exist more general conditionally-invariant
solutions of YMEs.

The above picture admits an analogy with the case where the equation under study has
a general solution. In that case, each two solutions can be connected by a curve which
is a solution of the equation. The only exceptions are the singular solutions which are
obtained by some asymptotic procedure. So one can guess that there exists a collection of
conditionally-invariant solutions of YMEs such that the majority of invariant solutions are
their particular cases and the remaining ones are obtained from these by an asympiotic
procedure. However, this problem so far remains completely open and needs further
investigation.

Our last remark is that the procedure suggested here also yields some well known
exact solutions of YMEs. For example, the ansatz for the Yang-Mills field determined by
expressions (2),(3) and (8v) gives rise to the meron and instanton solutions of the system
(1), originally obtained with the help of the ansatz suggested by "t Hooft [21], Corrigan and
Fairlie [5] and Wilezek [22] (for more details, see [16]).
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